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Abstract. In this paper, a number of theoretical and algorithmic issues concerning the solution of
parametric nonconvex programs are presented. In particular, the need for defining a suitable overes-
timating subproblem is discussed in detail. The multiparametric case is also addressed, and a branch
and bound (B&B) algorithm for the solution of parametric nonconvex programs is proposed.
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1. Introduction, Background and Motivation

Consider the following nonconvex program:

z=min
x
f �x� (1.1)

s.t. gi�x��0�i=1�			�I (1.2)

xLj �xj�x
U
j �j=1�			�J (1.3)

x∈�J � (1.4)

where x is a vector of continuous variables, f is a scalar function, gi�0�i=
1�			�I is the set of inequality constraints, and the superscripts L and U denote
lower and upper bounds respectively. Many algorithms have been proposed for
the global solution of (1) [18, 21, 27, 43]. While solution techniques based upon
stochastic search, genetic algorithms and simulated annealing have been presented
in the open literature (see [6] for references), in this work the focus is on determin-
istic optimization based algorithms. Note that the solution of (1) is quite important
in the fields of science and engineering [22, 25]. Branch and bound (B&B) al-
gorithms are amongst the most popular deterministic optimization algorithms.
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Note that deterministic algorithms which are based upon duality theory, are also
available [23]. B&B algorithms rely on obtaining upper and lower bounds on the
solution of (1) which converge within a given tolerance as the iterative steps in
the algorithm are taken [5]. An upper bound can be obtained by solving (1) by
using a local optimizer. The lower bound is obtained by replacing all the noncon-
vex terms in f and g by the corresponding convex underestimators and then solving
the resulting problem. Note that smaller the range of x, �xL�xU �, the tighter is the
underestimator and hence tighter is the lower bound. In the next step, known as the
branching of the B&B tree, for some xj , the interval �x

L
j �x

U
j � is partitioned into, say

two, smaller intervals: �xLj �x
⊗
j � and �x

⊗
j �x

U
j �where x

L
j <x

⊗
j <x

U
j . In the partitioned

intervals the tighter underestimators are obtained and the corresponding underesti-
mating subproblems are solved. The upper bound can also be tightened by solving
(1) by using local optimization solvers in the partitioned intervals and then taking
the lowest of all the values of these local optimal solutions and the upper bound
obtained before partitioning. Note that the tightening of the lower bound means an
increase in its value and for the upper bound a decrease in its value. The parti-
tioned intervals where a solution of the underestimating subproblem is greater than
or within a certain tolerance of the upper bound are removed from further consider-
ation – this is known as bounding or fathoming. The remaining partitioned intervals
are further partitioned into smaller intervals and this procedure continues until all
the intervals except the ones where the global solution lies and is within a certain
tolerance of the upper bound, have been fathomed. The partitioning or branching
may take place for a different xj at each iteration. Note the following two remarks
regarding this solution approach.

REMARK 1. Solution of (1) by using a local optimizer provides an upper bound.

REMARK 2. For the solution of (1), fathoming of the partitioned sub-spaces is
achieved by comparing lower and upper boundswhich are simple numerical values.

In this paper we are concerned with the following parametric non-convex pro-
gram:

z���=min
x
f �x� (2.1)

s.t. gi�x��bi+Fi�� i=1�			�I (2.2)

xLj �xj�x
U
j � j=1�			�J (2.3)

x∈�J (2.4)

�∈�⊆�S� (2.5)

where � is a vector of parameters and � is a compact and polyhedral convex
set, bi is the ith row of I dimensional constant column vector b and Fi is the
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ith row of constant matrix F of dimension I×S. The objectives is to obtain the
complete profile of all the global solutions for all the values of �∈� without
solving the global optimization problems for all the values of �. Note that the
assumptions that � appears only on the right hand side of the constraints and that
� is a convex set are not restrictive. For a given problem when these assumptions
are not valid, then that problem can be reformulated as (2) by defining some
additional variables, x, equal to the �s that violate the assumptions.
Computational requirements for finding the solution of (1) for a general case,

and that of (2) even for the case when f and g are linear are not bounded by a
polynomial in the size of the problem. Nevertheless the solution of (2) has immense
practical applications: (i) hybrid parametric/stochastic programming [2, 26], (ii)
process planning under uncertainty [39], (iii) scheduling under uncertainty [44],
(iv) material design under uncertainty [15], (v) multi-objective optimization [33,
34, 42], (vi) flexibility analysis [7, 9], (vii) computation of singular multivariate
normal probabilities [8], and (ix) solution of special cases of (1) [30]. While sens-
itivity analysis, which characterizes the optimal solution in the neighborhood of
perturbed �, has been widely studied and is available as a tool in many commercial
softwares, parametric programming algorithms and softwares which characterize
the solution for all the values of � are relatively new [1, 3, 13, 14, 16, 17, 19,
24, 31, 33, 35, 37, 38, 47, 53, 54]. One very important application of parametric
programming is in the area of online control and optimization where the optimal
control variables are obtained explicitly as a function of the state variables and
therefore online control and optimization problem reduces to a simple function
evaluation problem [10, 28, 29, 36, 40, 41, 45, 46, 48–52]. So far this approach has
focused on linear systems with quadratic objective functions. A solution technique
for (2) would provide a major step in the direction of obtaining explicit solution of
nonlinear optimal control problems.
While the ideas presented in this work are quite general, for the sake of sim-

plicity in presentation, the discussions and illustrations will be centered around the
case when the only nonconvexities in (2) are due to the presence of bilinear terms.

REMARK 3. For the case when nonconvexities other than bilinear terms are also
present, it will be assumed that it is possible to create convex underestimating and
overestimating functions of f and g and that the resulting estimating functions are
continuously differentiable. See [5] for estimators for various types of nonconvex
terms.

The basic idea of the B&B algorithm proposed in this work is to obtain paramet-
ric upper and lower bounds on the solution of (2). If the difference between the
upper and lower bounds is within a certain tolerance, �1, the algorithm converges,
otherwise for some xj the interval �xLj �x

U
j � is partitioned and tighter parametric

lower and upper bounds are obtained. Note that a similar idea and a rudimentary
prototype algorithm which relies on fixing and perturbing � and solving the cor-
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responding underestimating and overestimating subproblems is presented in [20].
Also note that a special case where f is concave, g is linear and S=1 is discussed
in [11]. In this work, the upper and lower bounds are obtained by formulating and
solving multiparametric convex overestimating and underestimating subproblems.
The overestimating and underestimating subproblems are formulated by replacing
the nonconvex terms in f and g by their convex underestimators and overestima-
tors respectively. The resulting multiparametric convex problems are solved by
using the procedure described in [16] a brief outline of which is presented in the
next section. First note the following remark.

REMARK 4. Tighter overestimators of f and g in (2) and hence the tighter up-
per bounds on z��� would result in faster convergence of the solution procedure
described in the last paragraph.

1.1. MULTIPARAMETRIC CONVEX NONLINEAR PROGRAMS

To facilitate the following discussion let f̌ and ǧ denote the convex underestimators
of f and g respectively. For simplicity in presentation, assume that any additional
variables that are required for defining ǧ are contained in x and therefore no new
variables are defined. The aim is to solve the following multiparametric convex
nonlinear programming problem:

ž���=min
x
f̌ �x� (3.1)

s.t. ǧi�x��bi+Fi�� i=1�			�I (3.2)

xLj �xj�x
U
j �j=1�			�J (3.3)

x∈�J (3.4)

�∈�⊆�S	 (3.5)

Note that ž��� is a convex and continuous function of � [19]. An outer- approxima-
tion of (3) is obtained by formulating and solving the following multiparametric
linear program:

ˇ̌z���=min
x
f̌ �x∗�+�xf̌ �x∗��x−x∗� (4.1)

s.t. ǧ�x∗�+�xǧ�x∗��x−x∗��bi+Fi�� i=1�			�I (4.2)

xLj �xj�x
U
j j=1�			�J (4.3)

x∈�J (4.4)

�∈�⊆�S� (4.5)

where �∗ is an initial feasible point and x∗ is the optimal solution of (3) for �=�∗.
Note that the solution of (4) is given by a set of optimal solution profiles, ˇ̌z���,
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which are affine in � and the corresponding polyhedral regions of optimality in �
known as critical regions, CR, [24, 13]. Also note that ˇ̌z��� is a piecewise linear,
continuous and convex function of � [24]. Note that for convenience and simplicity
in presentation, the notation CR is used to denote the set of points in the space of �
that lie in a CR as well as to denote the set of inequalities which define the CR. For
a given CR the maximum difference between ž��� and ˇ̌z��� will lie at one of the
vertices of CR. At this vertex, �∗, another mp-LP of the form (4) is formulated and
solved to obtain another set of ˇ̌z���. This procedure of identifying �∗ and obtaining
ˇ̌z��� continues until the maximum difference between ž��� and ˇ̌z��� is within a pre-
specified tolerance, �2. The tolerance �2 is then added to ˇ̌z��� to obtain ž���. The
final solution of (3) is given by linear parametric profiles and the corresponding
regions of optimality. With this background it is now appropriate to start looking
into the issues related to the solution of multiparametric nonconvex programs of
the form (2). This is achieved by providing four motivating numerical examples in
section 2.1 where issues that arise in obtaining parametric overestimators are
discussed and in particular four different ways of obtaining parametric overesti-
mators are presented. In section 2.2 an algorithm for solving (2) is presented and
section 3 extends this for the case when 0–1 integer variables are also involved
in (2). Two illustrative examples are presented in section 4, while concluding
remarks are given in Section 5.

2. Multiparametric Non-Convex Nonlinear Programming

2.1. MOTIVATING EXAMPLES

EXAMPLE 1. Consider the following example:

z���=min
x

cos�x� (5.1)

s.t. x�� (5.2)

x�� (5.3)

����5�� (5.4)

where x and � are scalars. The exact solution of this problem which is given by
z���=cos��� is plotted in Figure 1. Recall that in remark 1 it was noted that a
local optimizer could be used to solve (1) to obtain an upper bound. In Section 1.1
a procedure was described which obtains the optimal solution for convex problems
and hence could be thought of as a local parametric optimizer for solving (2).
Next it is demonstrated that this procedure does not provide an upper bound on the
solution of (2).
Let �∗=� be a starting feasible point. An outer-approximation of (5) is given

as follows:

zLOCAL���=min
x

−1 (6.1)
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Figure 1. Example 1.

Figure 2. f �x� and f̌ �x� for Example 2.

s.t. x�� (6.2)

x�� (6.3)

����5�� (6.4)

and its solution is given by zLOCAL���=−1 and the corresponding CR is given
by ����5�. The maximum difference between z��� and zLOCAL��� at the
vertices of the CR is zero and hence the local parametric optimization procedure
terminates. From Figure 1 note that zLOCAL��� is not an upper bound on z���.
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REMARK 5. In general solving (2) by using the local parametric optimizer does
not provide a parametric upper bound.

REMARK 6. A local solution of (1) at least provides a feasible solution. Even this
property does not hold true for the case of (2). For example, if z��� is discontinu-
ous then the solution obtained by the local parametric optimizer, which spans the
complete range of � simply by checking the solution at the vertices of the CR, may
miss some discontinuities in between.

The next example demonstrates a way of obtaining parametric upper bound. This
is followed by two examples which discuss four different ways of obtaining para-
metric upper bounds along with the relative merits in terms of computational re-
quirements associated with obtaining each of the overestimators.

EXAMPLE 2. Consider the following example:

z���=min
x
f �x�=−x2+0	01exp�x� (7.1)

s.t. x�� (7.2)

−4�x�10 (7.3)

−4���10� (7.4)

where x and � are scalars. An underestimating subproblem of the form (3) for this
example is given by:

ž���=min
x
f̌ �x�=−6x+0	01exp�x�−40 (8.1)

s.t. x�� (8.2)

−4�x�10 (8.3)

−4���10	 (8.4)

Note that the underestimating subproblem (8) is obtained by replacing −x2,
the only nonconvex term in (7), by its linear convex underestimator. See Figure 2
where a plot of f �x� and f̌ �x� is given. By using Figure 2, the solution of (8) is
given by x���=�, ∀�∈ �−4�6	4� and x���=6	4∀�∈ �6	4�10�. This solution
is inferred from Figure 2 by observing that f̌ �x� monotonically decreases as x
increases from −4 to 6.4 and then f̌ �x� monotonically increases as x increases
from 6.4 to 10 and by also keeping in mind the constraints on x and �. Substituting
this solution in f̌ �x� one obtains a parametric underestimator, ž1���, for (7) and
since the constraints in (7) are convex, substitution of this solution in f �x� pro-
vides an parametric overestimator or upper bound, ẑ1��� – the superscript 1
denotes that these are obtained in the first iteration. Note that if the constraints
were not convex then the solution must also be substituted into the constraints to
check for feasibility. Also note that [11] suggested the substitution of the solution
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of the underestimating subproblem into f �x� to obtain an upper bound for the
case when f is concave, g is linear and � is a scalar. See Figure 3 where ž1���
and ẑ1��� are plotted. In the next step, ž1��� is compared to ẑ1��� and the inter-
vals of � where ẑ1���− ž1�����1, where �1 is a small positive tolerance, are
fathomed. For this example �1=0. From Figure 3 only �=−4 is fathomed and
the next step is taken where the interval of x is divided into two smaller inter-
vals: �−4�0� and [0, 10] and the corresponding underestimating subproblems are
formulated:

ž2�1���=min
x
f̌ 2�1�x�=4x+0	01exp�x� (9.1)

s.t. x�� (9.2)

−4�x�0 (9.3)

−4���10� (9.4)

ž2�2���=min
x
f̌ 2�2�x�=−10x+0	01exp�x� (10.1)

s.t. x�� (10.2)

0�x�10 (10.3)

−4���10	 (10.4)

See Figure 4 where f̌ 2�1�x� and f̌ 2�2�x� for the corresponding intervals of validity
are plotted. From Figure 4 the solution of (9) is given by: x���=−4, ∀�∈
�−4�10� and that of (10) is given by: x���=�, ∀�∈ �0�6	908� and x���=6	908,
∀�∈ �6	908�10�. The corresponding ž2�1��� and ž2�2��� are plotted in Figure 5.
Substitution of these solutions into f �x� in (7) provides parametric overestimators
or upper bounds, ẑ2�1��� and ẑ2�2��� which are plotted in Figure 6. Now all the
three upper bounds, ẑ1���, ẑ2�1��� and ẑ2�2���, that have been obtained so far are
compared and a minimum of them over � is obtained to give the current upper
bound, z̄���. Each of the lower bounds, ž2�1��� and ž2�2��� is then compared to
z̄��� – see Figure 7. ž2�1��� is within �1 of z̄��� for all � and therefore the interval
x∈ �−4�0� is fathomed for all �∈ �−4�10�. ž2�2��� is within �1 of z̄��� for �∈
�−4�1	605� and therefore the interval x∈ �0�10� needs to be further branched.
Just to recollect the results so far: z̄��� is the final solution for �∈ �−4�1	605�
and for �∈ �1	605�10� the interval of x that needs to be further explored is given
by [0, 10]. Note the following remarks.

REMARK 7. For the solution of (2), parametric profiles and not simple numerical
values need to be compared to make decisions regarding the fathoming step in the
B&B tree.

REMARK 8. For the solution of (2), substitution of the solution of the underestim-
ating subproblem into the original nonconvex problem results in an overestimator
which in general may be nonlinear and nonconvex. For example see Figure 6.
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Figure 3. ẑ1��� and ž1��� for Example 2.

Figure 4. f̌ 2�1�x� and f̌ 2�2�x� for Example 2.

REMARK 9. For the case when S=1 comparison of nonlinear parametric pro-
files requires solution of a nonlinear equation per comparison. Intervals of � where
the solution has been found and where it has not been found are identified.

REMARK 10. For the case when S�2 this comparison is much harder to
perform and so is identifying the regions of � where the solution has or has not
been found. See Figure 8 for S=2 where a hypothetical case is shown and it is
nontrivial to identify the regions in the space of � where the linear parametric un-
derestimator is within �1 of the nonlinear parametric upper bound. In general these
regions would be nonlinear and nonconvex. Some initial thoughts on comparing
nonlinear profiles were presented by [31].
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Figure 5. ž2�1��� and ž2�2��� for Example 2.

Figure 6. ẑ1���, ẑ2�1��� and ẑ2�2��� for Example 2.

EXAMPLE 3. Consider an examplewith a bilinear objective and linear constraints:

z���=min
x
f �x�=x1x2 (11.1)

s.t. 2x1+x2�� (11.2)

x1+3x2�0	5� (11.3)

−1�x1�1 (11.4)

−1�x2�1 (11.5)

0���1� (11.6)
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Figure 7. z̄���, ž2�1��� and ž2�2��� for Example 2.

Figure 8. z̄��� and ž��� for S=2.

where � is a scalar. An underestimator of x1x2 can be obtained by replacing it by
an additional variable w̌ and introducing the following linear constraints [32]:

w̌�xL1 x2+xL2 x1−xL1 xL2 (12.1)

w̌�xU1 x2+xU2 x1−xU1 xU2 	 (12.2)

Similar overestimating linear constraints are given as follows:

ŵ�xL1 x2+xU2 x1−xL1 xU2 (13.1)

ŵ�xU1 x2+xL2 x1−xU1 xL2 	 (13.2)
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The underestimating subproblem of (11) is formulated by using (12) as follows:

ž���=min
x�w̌
w̌ (14.1)

s.t. w̌�−x2−x1−1 (14.2)

w̌�x2+x1−1 (14.3)

2x1+x2�� (14.4)

x1+3x2�0	5� (14.5)

−1�x1�1 (14.6)

−1�x2�1 (14.7)

0���1	 (14.8)

The solution of (14) is given by: w̌=0	5�−1, x1=0	5�, x2=0, ž���=0	5�−1,
∀�∈ �0�1�. Now overestimators of z��� can be created in the following four ways.

OVERESTIMATOR-1, ẑO1���: Substitution of the solution of (14) into f �x� in
(11) gives the following overestimator: ẑO1���=0.

OVERESTIMATOR-2, ẑO2���: Another overestimator can be created based upon
the following lemma.

LEMMA 1. [6] The maximum separation between x1x2 and w̌ inside the rectangle
�xL1 �x

U
1 �×�xL2 �xU2 � is equal to �12=�xU1 −xL1 ��xU2 −xL2 �/4.

LEMMA 2. If f �x�=f c�x�+∑J
j=1

∑J
j′=1ajj′xjxj′ , where j �=j ′, f c�x� is

a convex function of x, ajj′ is constant and positive for all j and j ′ (without loss
of generality, we assume ajj′>0; for some ajj′<0 the following results can be
accordingly modified) and g is convex then ẑO2���= ž���+

∑J
j=1

∑J
j′=1ajj′�jj′

where �jj′ =�xUj −xLj ��xUj′ −xLj′�/4. Note that terms of the form ajj′xjxj′ , j=j ′
are convex and a part of the convex function f c�x�.
Proof. Consider the following problem:

z���=min
x
f c�x�+

J∑
j=1

J∑
j′=1

ajj′xjxj′ (15.1)

s.t. gi�x��bi+Fi�� i=1�			�I (15.2)

xLj �xj�x
U
j � j=1�			�J (15.3)

x∈�J (15.4)

�∈�⊆�S� (15.5)
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where j �=j ′ and ajj′ is constant and positive for all j and j ′. A convex underes-
timating subproblem of (15) by using (12) is given as follows:

ž���=min
x�w̌
f c�x�+

J∑
j=1

J∑
j′=1

ajj′�w̌jj′ (16.1)

s.t. gi�x��b1+Fi��i=1�			�I (16.2)

w̌jj′ �x
L
j xj′ +xLj′xj−xLj xLj′� j�j ′ =1�			�J (16.3)

w̌jj′ �x
U
j xj′ +xUj′ xj−xUj xUj′ � j�j ′ =1�			�J (16.4)

xLj �xj�x
U
j � j=1�			�J (16.5)

x∈�J (16.6)

�∈�⊆�S	 (16.7)

By using Lemma 1 an overestimating subproblem of (15) can be constructed from
(16) as follows:

ẑO2���=min
x�ŵ
f c�x�+

J∑
j=1

J∑
j′=1

ajj′�ŵjj′ (17.1)

s.t. gi�x��bi+Fi��i=1�			�I (17.2)

ŵjj′ �x
L
j xj′ +xLj′xj−xLj xLj′ +�jj′� j�j ′ =1�			�J (17.3)

ŵjj′ �x
U
j xj′ +xUj′ xj−xUj xUj′ +�jj′� j�j ′ =1�			�J (17.4)

xLj �xj�x
U
j � j=1�			�J (17.5)

x∈�J (17.6)

�∈�⊆�S	 (17.7)

where �jj′ =�xUj −xLj ��xUj′ −xLj′�/4. By defining w̄jj′ = ŵ−�jj′ , ∀j�j ′ =
1�			�J , j �=j ′, (17) can be formulated as follows:

ẑO2���=min
x�w̄
f c�x�+

J∑
j=1

J∑
j′=1

ajj′�w̄jj′ +
J∑
j=1

J∑
j′=1

ajj′��jj′ (18.1)

s.t. gi�x��bi+Fi��i=1�			�I (18.2)

w̄jj′ �x
L
j xj′ +xLj′xj−xLj xLj′� j�j ′ =1�			�J (18.3)

w̄jj′ �x
U
j xj′ +xUj′ xj−xUj xUj′ � j�j ′ =1�			�J (18.4)

xLj �xj�x
U
j � j=1�			�J (18.5)

x∈�J (18.6)

�∈�⊆�S	 (18.7)
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By comparing (16) and (18), ẑO2���= ž���+
∑J
j=1

∑J
j′=1ajj′�jj′ .

Therefore for the current example ẑO2���= ž���+�12=0	5�.

OVERESTIMATOR-3, ẑO3��� !While the first two overestimators were obtained
with negligible effort after the underestimating subproblem had been solved the
remaining two overestimators require formulating and solving overestimating sub-
problems. First overestimating subproblem is formulated as follows:

ẑO3���=min
x�ŵ
ŵ (19.1)

s.t. ŵ�−x2+x1+1 (19.2)

ŵ�x2−x1+1 (19.3)

2x1+x2�� (19.4)

x1+3x2�0	5� (19.5)

−1�x1�1 (19.6)

−1�x2�1 (19.7)

0���1	 (19.8)

Note that the McCormick overestimators (13) are used except that the sign of the
less than inequalities has been changed to the greater than inequalities as follows:

ŵ�xL1 x2+xU2 x1−xL1 xU2 (20.1)

ŵ�xU1 x2+xL2 x1−xU1 xL2 	 (20.2)

The solution of (19) is given by ẑO3���=1.

OVERESTIMATOR-4, ẑO4��� ! Another overestimating subproblem can be for-
mulated as follows:

ẑO4���=max
x�ŵ
ŵ (21.1)

s.t. ŵ�−x2+x1+1 (21.2)

ŵ�x2−x1+1 (21.3)

2x1+x2�� (21.4)

x1+3x2�0	5� (21.5)

−1�x1�1 (21.6)

−1�x2�1 (21.7)

0���1	 (21.8)

The things to be noted are that the less than inequalities in (13) have been re-
tained and the problem now is formulated as to maximize and not minimize ŵ.
The solution is given by ẑO4���=1. Also note that it is not always possible to
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obtain ẑO4��� as illustrated next. Consider a modification of (11) where f �x�=
x1x2+100x1+100x2. An underestimator for the modified problem is given by
ž���=50	5�−1, ∀�∈ �0�1�. An attempt to maximize f̂ �x�= ŵ−100x1−100x2
subject to the constraints in (21.2)–(21.8) gives ẑ���=−50	5�+1, which is not a
valid overestimator. One obvious thought that comes to mind is that why maximize
f̂ �x�= ŵ−100x1−100x2 and not f̂ �x�= ŵ+100x1+100x2. The reasons for
this are that (i) the terms 100x1+100x2 in f �x�, the original objective function,
were supposed to be minimized and not maximized and (ii) if, for example, the
terms 100x1

2+100x2
2 were present instead of 100x1+100x2 then maximization

of f̂ �x�= ŵ+100x1
2+100x2

2 is a nonconvex optimization problem, while the
objective was to obtain a convex overestimator.

REMARK 11. It is not always possible to obtain ẑO4��� if convex terms are also
present in addition to bilinear terms in f �x�. If only bilinear terms are present in
the objective function then ẑO4���� ẑO3���. This can be interpreted by plotting
the right hand sides of (13) as a function of x1 and x2 for some fixed values of
xL1 �x

U
1 �x

L
2 , and x

U
2 .

EXAMPLE 4. Consider an example with a bilinear term in the constraints:

z���=min
x
f �x�=x1+x2 (22.1)

s.t. 2x1+x2�� (22.2)

x1+3x2�0	5� (22.3)

4x1+x2+x1x2�0	25� (22.4)

−1�x1�1 (22.5)

−1�x2�1 (22.6)

0���1	 (22.7)

The understanding subproblem is given as follows:

ž���=min
x�w̌
f �x�=x1+x2 (23.1)

s.t. 2x1+x2�� (23.2)

x1+3x2�0	5� (23.3)

4x1+x2+w̌�0	25� (23.4)

w̌�−x2−x1−1 (23.5)

w̌�x2+x1−1 (23.6)

−1�x1�1 (23.7)

−1�x2�1 (23.8)

0���1	 (23.9)

The solution of (23) is given by: x1=0	5�, x2=0, w̌=0	5�−1, ž���=0	5�,
∀�∈ �0�0	444� and x1=−1	75�+1, x2=4	5�−2, w̌=2	75�−2, ž���=
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2	75�−1�∀�∈ �0	444�0	6667�. The problem is infeasible ∀�∈ �0	6667�1� and
therefore ž���=��∀�∈ �0	6667�1�. The overestimators are obtained as follows.

OVERESTIMATOR-1, ẑO1���: Substitution of the solution of (23) into f �x� and
in (22.4) gives the following overestimator: ẑO1���=0	5�, ∀�∈ �0� and ẑO1���=
2	75�−1, ∀�∈ �0	444�0	6667�. Note that for this example the solution of the
underestimating subproblem is substituted into the objective function as well as
constraints since one of the constraints is nonconvex.

OVERESTIMATOR-2, ẑO2���: an overestimating subproblem for (22) can be
formulated by using Lemma 1 as follows:

ẑO2���=min
x�ŵ
f �x�=x1+x2 (24.1)

s.t. 2x1+x2�� (24.2)

x1+3x2�0	5� (24.3)

4x1+x2+ŵ�0	25� (24.4)

ŵ�−x2−x1 (24.5)

ŵ�x2+x1 (24.6)

−1�x1�1 (24.7)

−1�x2�1 (24.8)

0���1	 (24.9)

Note that the overestimators in (24) for the bilinear term in (22) are obtained by
using the McCormick underestimators in (12) and adding �12 from Lemma 1 as
follows:

ŵ�xL1 x2+xL2 x1−xL1 xL2 +�12 (25.1)

ŵ�xU1 x2+xU2 x1−xU1 xU2 +�12	 (25.2)

The solution of (24) is given by: ẑO2���=2	75�, ∀�∈ �0�0	22�.
REMARK 12. In some cases ẑO2��� can be obtained more efficiently – by avoid-
ing solving a parametric optimization problem of the form (24) and solving only
the underestimating subproblem of the form (23) – although for an interval of
� that is bigger than given in the original problem. For example, consider the
following problem:

z���=min
x
f c�x� (26.1)

s.t. gci �x��bi�i=1�			�I�i �= i′ (26.2)

gci′�x�+x1x2�Fi′1� (26.3)
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xLj �xj�x
U
j � j=1�			�J (26.4)

x∈�J (26.5)

�L����U (26.6)

where f c�x��gci �x� and g
c
i′�x� are convex functions of x and � is a scalar bounded

between �L and �U . An underestimating subproblem for (26) is given by:

ž���=min
x�w̌
f c�x� (27.1)

s.t. gci �x��bi� i=1�			�I�i �= i′ (27.2)

gci′�x�+w̌�Fi′1� (27.3)

w̌�xL1 x2+xL2 x1−xL1 xL2 (27.4)

w̌�xU1 x2+xU2 x1−xU1 xU2 (27.5)

xLj �xj�x
U
j � j=1�			�J (27.6)

x∈�J (27.7)

�L����U 	 (27.8)

Similarly an overestimating subproblem is given by:

ẑO2���=min
x�ŵ
f c�x� (28.1)

s.t. gci �x��bi� i=1�			�I�i �= i′ (28.2)

gci′�x�+ŵ�Fi′1� (28.3)

ŵ�xL1 x2+xL2 x1−xL1 xL2 +�12 (28.4)

ŵ�xU1 x2+xU2 x1−xU1 xU2 +�12 (28.5)

xLj �xj�x
U
j � j=1�			�J (28.6)

x∈�J (28.7)

�L����U 	 (28.8)

Subtracting �12 from (28.3)–(28.5) and defining w̄= ŵ−�12, (28) can be formu-
lated as:

ẑO2���=min
x�w̄
f c�x� (29.1)

s.t. gci �x��bi� i=1�			�I�i �= i′ (29.2)

gci′�x�+w̄�Fi′1�−�12 (29.3)

w̄�xL1 x2+xL2 x1−xL1 xL2 (29.4)
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w̄�xU1 x2+xU2 x1−xU1 xU2 (29.5)

xLj �xj�x
U
j � j=1�			�J (29.6)

x∈�J (29.7)

�L����U 	 (29.8)

Note that the only difference between (27) and (29) is in (27.3) and (29.3), which
essentially means that (29) is solved for a shifted interval of �. This means that for
Fi′1>0, if (27) is solved for � in the expanded interval ��L−�12/Fi′1��U �, then the
solution of (29) can be inferred from the solution of (27). The corresponding ex-
panded interval when Fi′1<0 is given by ��L��U−�12/Fi′1�. Note that this option
of solving (27) for an expanded interval of � will be computationally attractive if
the shift, �12/Fi′1, does not significantly expand the original interval ��L��U �, i.e.,
there is at least some overlap between the expanded and the original interval. This
can be checked in a pre-processing step. The above mentioned procedure can be
generalized for the case when � is a vector and present in more than one constraint
and also when there are some more nonconvex terms in (26). For generalization of
the procedure one should be able to formulate one problem for which the solution
space covers the solution space of both the underestimating and the overestimating
subproblems.

OVERESTIMATOR-3, ẑO3���: Another way of obtaining an overestimator is to
solve the following problem:

ẑO3���=min
x�ŵ
f �x�=x1+x2 (30.1)

s.t. 2x1+x2�� (30.2)

x1+3x2�0	5� (30.3)

4x1+x2+ŵ�0	25� (30.4)

ŵ�−x2+x1+1 (30.5)

ŵ�x2−x1+1 (30.6)

−1�x1�1 (30.7)

−1�x2�1 (30.8)

0���1� (30.9)

where the overestimators are obtained by using (20). (30) does not have a feasible
solution and therefore ẑO3���=�.

LEMMA 3. The overestimator in (25), which corresponds to ẑO2���, is tighter
than the overestimator in (20), which corresponds to ẑO3���, in 87.5% of the area
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of the rectangle �xL1 �x
U
1 �×�xL2 �xU2 � provided that the rectangle is not empty. The

proof is easy and not presented.

REMARK 13. Note that so far we have focussed on the case where �12 for bilinear
terms was given [6]. For the case when general nonconvex terms are also involved
then [6] showed that the maximum separation between a nonconvex term and its
underestimator is bounded and proportional to a positive parameter and the square
of the diagonal of the current box constraints on x. Expressions for the maximum
separation distance for fractional terms have been presented in [4].

OVERESTIMATOR-4, ẑO4���: It is not possible to obtain ẑO4��� because the non-
convexity appears in the constraints and not in the objective function.

2.2. MULTIPARAMETRIC NONCONVEX PROGRAMMING: THEORY AND
ALGORITHM

The central idea behind the solution of (2) is to create convex parametric under-
estimators and overestimators, denoted by ž��� and ẑ��� respectively, of z��� and
then branch and bound on x until the difference between ẑ��� and ž��� is within
a certain pre-specified tolerance, �1 (Remarks 4–7). The difference between ẑ���
and ž��� will be referred to as “Global Parametric Gap”. Note that for the case
when ẑ��� and ž��� are affine in � the global parametric gap is checked by using a
comparison procedure proposed by [3] which is summarized in Appendix A. The
parametric underestimators are obtained by creating convex underestimators of f
and g and then formulating and solving problem (3) as described in Section 1.1.
The solution of (3) is given by linear parametric profiles and the corresponding
critical regions. Convex parametric overestimators can also be similarly obtained
by creating convex overestimators of f and g and solving the resulting multipara-
metric convex nonlinear program as described in Section 1.1. The final solution
would again be given by linear parametric profiles and the corresponding critical
regions. In some cases it is not required to formulate and solve an overestimating
subproblem and instead a parametric overestimator can be obtained merely from
the solution of the underestimating subproblem – these cases were discussed in
Section 2.1. Four different ways of obtaining parametric overestimators were dis-
cussed and the key features of each of the parametric overestimators were also
presented. The relative merits of different types of parametric overestimators can
be weighed in terms of three attributes: (i) ease of obtaining, (ii) tightness and (iii)
functional description, i.e., linear or nonlinear. These issues are briefly reviewed
next.
Parametric overestimator of type-1, which is denoted by ẑ���O1, is perhaps the

easiest one to obtain because it requires the substitution of the solution of the under-
estimating subproblem, (3), into the original problem, (2). One disadvantage is that,
in general, it may lead to nonlinear and nonconvex functional description of ẑ���O1
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and corresponding critical regions. In such cases comparison of ẑ���O1 to ž��� is
nontrivial (Remarks 8–10). For the cases (i) when S=1, the comparison is easier
(Remark 9) and (ii) when ẑ���O1 simplifies to affine expressions in � (ẑ���O1 in
Examples 3 and 4), the comparison is much simpler and can be achieved by the
procedure of [3] described in Appendix A.
ẑ���O2, the overestimator of the second type, which is based upon the work

of Floudas and co-workers (Lemma 1), also has the advantage that it can be ob-
tained with negligible effort after the underestimating subproblem has been solved
(Lemma 2). This feature holds true for the case when the only nonconvex terms are
bilinear terms and these terms are present only in the objective function. For the
case when bilinear terms are also present in the constraints there are some cases
where ẑ���O2 can be obtained more effficiently at modest extra effort (Remark
12). Since the underestimator is affine in �, ẑ���O2 is also afffine in � and the
comparison can be carried out ([3], Appendix A). The extension of these ideas for
the case when general nonconvex terms are present is also possible along the work
of Floudas and co-workers (Remark 13).
Unlike for the case of ẑ���O1 and many cases of ẑ���O2, the overestimator of

the third type, ẑ���O3, requires solving a parametric optimization problem. The key
advantage is that this type of formulation is completely general and does not have
limitations regarding the presence of only bilinear terms and restrictions regarding
nonconvex terms only in the objective function (Remark 3). For the case of bilinear
terms the overestimating expressions, used for ẑ���O3, are less tight than the ones
used for ẑ���O2in 87.5% of the area of the rectangle �xL1 �x

U
1 �×�xL2 �xU2 � (Lemma

3). The solution is affine in � and can be compared to ž���.
The fourth type of overestimator, ẑ���O4, also requires solving a parametric

optimization problem. It is tighter than ẑ���O3 but is limited to the case when only
bilinear terms are present in the objective function because it relies on maximiza-
tion of the auxiliary variables, ŵ, which replace the bilinear terms (Remark 11 and
ẑ���O4 in Example 4).
Based upon the above developments an algorithm for the solution of (2) is

presented in Table 1. It is assumed that the parametric overestimators can be com-
pared to the parametric underestimators by using the comparison procedure ([3],
Appendix A) – which is always the case in ẑ���O2, ẑ���O3 and ẑ���O4 and some-
times is the case in ẑ���O1.
For general nonconvex problems, it is not obvious which overestimator will per-

form better than the other one, as the performance is dependent upon problem types
and particular examples under consideration. Some general remarks and lemmas
regarding the (i) effort required to obtain these overestimators, (ii) tightness and
(iii) effort required to compare to the underestimators have been presented. These
are quite important issues which afffect the overall performance of the algorithm.
In the next section, the case where 0–1 binary variables are also involved in (2) is
considered.
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Table 1. Multiparametric global optimization algorithm

Step 1. Initialize the current upper bound as z̄���=�, a region of �, CR, a space of
continuous variables x – determined by the lower and upper bounds xL and xU

respectively, and tolerances, �1 and �2.
Step 2. For a given region of �, CR, and the corresponding space of x,

(a) formulate and solve (3) as described in section 1.1 and obtain the
parametric underestimators, ž���.

(b) obtain the parametric overestimators, ẑ���, by using one of the methods
described in Sections 2.1 and 2.2.

Step 3. Compare ẑ��� to z̄���, as described in Appendix A, and update the current upper
bound z̄���=min�ẑ����z̄����, in the corresponding regions of �.

Step 4. Compare ž��� to z̄���, as described in Appendix A, and in the spaces of x
where,

(a) ž���� z̄���−�1, branch on x by subdividing the bounds on x and go to
Step 2,

(b) ž���� z̄���−�2, fathom those spaces of x only for the corresponding
regions of �.

Step 5. In the spaces of x where (3) is infeasible, fathom those spaces and the correspond-
ing regions of �.

Step 6. If no more spaces of x and regions of � to explore, terminate, or otherwise go to
Step 2.

Step 7. The final solution is given by z̄���.

3. Multiparametric Mixed-Integer Nonconvex Programming

Consider the following multiparametric mixed-integer nonlinear programming
problem:

z���=min
x�y
f �x�y� (31.1)

s.t. gi�x�y��bi+Fi�� i=1�			�I (31.2)

xLj �xj�x
U
j � j=1�			�J (31.3)

y∈#0�1$M (31.4)

x∈�J (31.5)

�∈�⊆�S� (31.6)

where y is a vector of 0-1 binary variables. The basic idea of the algorithm for
the solution of (31) is to obtain a parametric solution for y fixed at integer values
and then use this solution as the current solution to cut-off suboptimal integer solu-
tions and identify the ones that are better than the current one. The better integer
solutions that are identified then become the current solution and this procedure
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continues until all the optimal solutions and the corresponding regions of optimal-
ity, in the space of �, have been identified. An initial integer solution is identified
by solving the following problem:

min
x�y��

f �x�y� (32.1)

s.t. gi�x�y�−Fi��bi� i=1�			�I (32.2)

xLj �xj�x
U
j � j=1�			�J (32.3)

y∈#0�1$M (32.4)

x∈�J (32.5)

�∈�⊆�S� (32.6)

where � is treated as a vector of free variables. See [4] for an algorithm for the
solution of (32). Let the solution of (32) be given by y= ỹ. The algorithm starts
by fixing y= ỹ in (31) to obtain the following nonconvex mp-NLP:

zỹ���=min
x
f �x�ỹ� (33.1)

s.t. gi�x�ỹ��bi+Fi�� i=1�			�I (33.2)

xLj �xj�x
U
j � j=1�			�J (33.3)

x∈�J (33.4)

�∈�⊆�S	 (33.5)

The solution of (33) is then approached by creating convex underestimators and
overestimators of nonconvex functions f �x�ỹ� and g�x�ỹ� which converge to the
global optima by branching on the space of x – similar to solution of (2). The
lth solution of (33), zỹ���

l, which is given by a linear parametric profile valid in its
region of optimality, CRl represents a current upper bound in CRl. Another optimal
vector of integer variables is then obtained in each region CRl by formulating the
following problem:

min
x�y��

f �x�y� (34.1)

s.t. gi�x�y��bi+Fi�� i=1�			�I (34.2)

f �x�y�� ẑ���l (34.3)∑
n∈Nlk

ylkn −
∑
n∈Plk

ylkn � �N lk�−1� k=1�			�Kl (34.4)

xLj �xj�x
U
j � j=1�			�J (34.5)

y∈#0�1$M (34.6)
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x∈�J (34.7)

�∈CRl∈�⊆�S� (34.8)

where � is treated as a vector of free variables and �∈CRl indicates that � is
bounded in the regions given by CRl, N lk=�n�ylkn =1� and Plk=�n�ylkn =0�,
and �N lk� is the cardinality of N lk and Kl is the number of integer solutions that
have already been analysed in CRl. The formulation in (34) is a nonconvex problem
which is solved to global optimality [4] by branching on x�y and � and treating �
as a vector of free variables. The solution of (34) idenifies the next set of optimal
integer variables by introducing the constraint, f �x�y�� ẑ���l, to restrict the
objective function to take values which are less than the current upper bound and
introducing the integer cut, y �= ỹ, which is given by the constraint

∑
n∈Nlk y

lk
n −∑

n∈Plk y
lk
n � �N lk�−1, to eliminate the integer solutions that have already been

analysed.
The integer vector obtained from the solution of (34) is then returned back

to (33) to obtain another set of parametric profiles. Parametric solutions corres-
ponding to two integer solutions are then compared and a lower envelope of the
parametric solutions is retained by using the comparison procedure ([3], Appendix
A) to update the current upper bound zỹ���. The algorithm proceeds in this way
until there is no feasible solution to (34) in each region in the space of �. The final
solution is given by the current upper bound zỹ���.

4. Numerical Examples

In this section two examples are presented to illustrate the key steps of the al-
gorithms presented earlier.

EXAMPLE 5. Consider Example 3. For illustration purposes, first few solution
steps by using ẑO2��� and ẑO3��� are summarized in Table 2. For �1=0	01 and
�2=0 and by using ẑO2��� the algorithm converges in 72 LPs (2.23 s), whereas
142 LPs (4.40 s) are solved when using ẑO3���, by using GAMS/CPLEX [12] on
a Sun SPARC10-51 workstation. The final solution is given by:

z���=
{
0	5�−0	4922 ∀�∈ �0�0	5�
0	1666�−0	3255 ∀�∈ �0	5�1�

EXAMPLE 6. Consider the following example which involves binary variables:

z���=min
x�y

−x12−x22−y1−2y2 (35.1)

s.t. 4x1
2+x1+3x2

2−y1+10y2+3�1−�2�10 (35.2)

2x1
2+3x2

2+2y1−y2−�1+2�2�16 (35.3)
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ẑ O
3
��
�
!1
∀�

∈�
0�
1�
,
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ẑ O
2
��
�
!�
i�
0	
5�

−0
	5
∀�

∈�
0�
0	
5�
,

�i
i�
0	
16

66
�
−0
	0
83

3∀
�
∈�

0	
5�
1�
.

3(
c)

�−
1�
0�

�0
�1
�

�0
�1
�

0	
5�

−0
	5

0	
5�

−0
	2
5

0
(I
I)
In

(a
)

an
d

(d
)

th
e

un
de
re
st
im

at
or

cr
os
se
s

th
e

cu
rr
en
t
up

pe
r
bo

un
d.

3(
d)

�0
�1
�

�0
�1
�

�0
�1
�

0
0.
25

0	
33

3�
(I
II
)F

at
ho

m
(a
)
an
d
(d
).

B
ra
nc
h
on
x
R 1
in

(b
)
an
d
(c
).

x
R 1
an
d
x
R 2
ar
e
th
e
ra
ng

es
of
x
1
an
d
x
2
re
sp
ec
tiv

el
y.
�
f
is
th
e
fe
as
ib
le

ra
ng

e
of
�
fo
r
th
e
gi
ve
n
x
R 1
an
d
x
R 2
.



GLOBAL OPTIMIZATION PROBLEMS IN MULTIPARAMETRIC PROBLEMS 83

Figure 9. Critical Regions for Example 6.

Table 3. Parametric Solution of Example 6

S. No. y z��� Critical region
1 1,1 0	3�1−0	1�2−3	125 −1	186�1+0	395�2�−0	164

−1	2�1+0	4�2�0

2 1,1 1	486�1−0	495�2−3	289 −1	186�1+0	395�2�−0	164
−3�1+�2�−1

3 1,1 0	773�1−0	258�2−3	25 −0	727�1+0	242�2�0	125

4 1,1 1	5�1−0	5�2−3	125 −0	727�1+0	242�2�0	125
−1	2�1+0	4�2�0

5 1,0 −2	875 −3�1+�2�−1

0�x1�1 (35.4)

0�x2�1 (35.5)

1��1�2 (35.6)

4��2�5	 (35.7)

The global solution of this problem by using the algorithms described in the
previous section is given in Table 3 and the graphical interpretation of the crit-
ical regions is given in Figure 9. The algorithm requires a solution of 225 NLPs
consuming 32.14 CPU seconds by using GAMS/CONOPT2 (for NLPs) [12] for
�1=�2=0	25 on a Sun SPARC10-51 workstation.
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5. Concluding Remarks

In general, a local solution of a parametric nonconvex program does not provide
a parametric overestimator (remarks 5–6). In this paper four different ways of
obtaining a parametric overestimator were presented. The performance of the over-
estimators depends upon whether the problem is single or multiparametric
(remarks 9–10) and also on whether the nonconvex terms are present in the
objective function or the constraints (Lemmas 2, 3 and Remarks 11–13). The
performance can be measured in terms of the effort required to obtain the over-
estimators, tightness of the overestimators and also the effort required to compare
the overestimators to underestimators. This affects the overall performance of
the algorithm as demonstrated with illustrations. A branch and bound algorithmic
framework for the solution of multiparametric continuous and mixed-integer opti-
mization problems has been presented and tested on examples.
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Appendix

A. COMPARISON OF PARAMETRIC SOLUTIONS

[3] proposed an approach for comparing two parametric solutions, z���1 and z���2,
which are valid in the critical regions CR1 and CR2 respectively. Their approach,
which consists of two steps, is briefly described here. The first step is to define a
region, CRint=CR1∩CR2, where both the parametric solutions are valid. CRint can
be defined by removing all the redundant constraints from the set of inequalities
which define CR1 and CR2 – for a procedure to identify redundant constraints,
see [24]. In the second step, check: if CRint=∅, then z���1 and z���2 are the
solutions in CR1 and CR2, respectively, otherwise a new constraint, z���1�z���2,
is formulated and a constraint redundancy check is made for the new constraint
in CRint. This constraint redundancy test results in three cases which are analyzed
as follows:

Case 1: If the new constraint is redundant, then z���1�z���2, ∀�∈CRint.
Case 2: If the new constraint is infeasible, then z���1�z���2, ∀�∈CRint.
Case 3: If the new constraint is non-redundant, then:

• z���1�z���2�∀�∈/# �CRint
�z���1−z���2�0$� AND

• z���1�z���2�∀�∈/# �CRint
�z���1−z���2�0$

where / is an operator which removes redundant constraints and �CRint
represents

the set of constraints which define CRint. To identify the regions CR1−CRint and
CR2−CRint use the procedure described in Appendix B [17].
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Figure 10. Critical regions, CR and CRint .

Table 4. Definition of rest of the regions

Region Inequalities
CRrest

1 C1�0��L1 ��1��2��
U
2

CRrest
2 C1�0�C2�0��1��

U
1 ��2��

U
2

CRrest
3 C1�0�C2�0�C3�0��L1 ��1��

U
1 ��

L
2 ��2

Figure 11. Division of critical regions – Step 1.
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Figure 12. Division of critical regions – rest of the regions.

B. DEFINITION OF REST OF THE REGION

Given an initial region, CR and a feasible region, CRint such that CRint⊆CR,
a procedure is described in this section to define the rest of the region, CRrest=
CR−CRint. For the sake of simplifying the explanation of the procedure, consider
the case when only two parameters, �1 and �2, are present (see Figure 10), where
CR is defined by the inequalities: #�L1 ��1��

U
1 , �

L
2 ��2��

U
2 $ and CR

int is defined
by the inequalities: #C1�0�C2�0�C3�0$ where C1, C2 and C3 are linear in
�. The procedure consists of considering one by one the inequalities which define
CRint. Considering, for example, the inequality C1�0, the rest of the region is
given by, CRrest

1 ! #C1�0��L1 ��1, �2��
U
2 $, which is obtained by reversing

the sign of inequality C1�0 and removing redundant constraints in CR (see
Figure 11). Thus, by considering the rest of the inequalities, the complete rest of
the region is given by: CRrest=#CRrest

1 ∪CRrest
2 ∪CRrest

3 $� where CRrest
1 , CRrest

2 and
CRrest

3 are given in Table 4 and are graphically depicted in Figure 12.


